
AD-A125 123 ON THE CONSTRUCTION OF A MODULATING MULTIPHASE i/i
NAYETRAIN FOR A*PERTURBED..(U) NEW YORK UNIV NY COURANT
INST OF MATHEMATICAL SCIENCES D W MCLAUGHLIN 1982

UNCLASSIFIED AFOSR-TR-83- i AFOSR- -8228 F/G2/ NL

EhhhhhhhhhhhhI
EhhhhhhhhhhhhI



1.0.

02.0

Lt>
' L

J 4

suaw F owsmm-N
Ya* 47 '' :-

-7.-7

W.- m~ I k4



-. .TL 8$, -0 0

On the Construction of a Modulating Multiphase

Wavetrain for a Perturbed KdV Equation

by

David W. McLaughlin

Department of Mathematics and

Program in Applied Mathematics

University of Arizona
I Tucson, Arizona 35721

DTIC

ELECTE

D

*Supported in art by N.S.F. Grant #MCS-79-3533 and in

part by , -v 4

* While on leave 1980-82 at Courant Institute, New York University,
LU
- 251 Mercer Street, N.Y., N.Y. 10012.

1" 83 02 028 173 "'"p"11" '



UNCLASSIFIED
* ~~SECURITY CLASSIFICATION OF THIS PAGE (When Do!* 901101,04_________________

READ INSTRUCTIOKIREPORT DOCUMENTATION PAGE 8*9FORz COMPLETING FORK
REPORT. NUBEeOT ACCESS .LV RECIPIENAT'S CATALOG NUMBER

4. TITLE (And 96e.) 5.TYPIE Of REPORT & PERIOD COVERED

Technical
ON THE CONSTRUCTION OF A MODULATING MULTIPHASE S. PERFORMING ORG. REPORT NUMBER
WAVETRAIN FOR A PERTURBED KdV EQUATION

7. AUTNORfQ) S. CONTRACYTOR GRANT NUMMERfe)

David W. McLaughlin* AF0SR-bO-0228

ADDRESSIG. PROGRAM ELEMENT. PROJECT. TASKS. PERFORMING ORGANIZATION NAME AND ADESAREA & WORK UNIT NUMMERS
Courant Institute of Mathematical Sciences

New York University 251 Mercer Street 2304/A4 PE 61102F
II CNTOLIN OFCE NM AND ADDRESS 

12. REPORT DALMathemtical and Information Sciences Directorate ______ 44:u_______
Air Force Office of Scientific Reserach Is NMuma"OF PADC
Bolling AFB. DC 44

IA.MONTORNG GENY NM 91 IDRSSI firo m Contoing Offie) IS. SECURITY CLASS. (of tis reot)

Unicassified

1S. IS5TRIOUTION STATEMENT (01 tisi Reet)Q

Approved for public release-distribution unlimited

17. DISTRI01UTION ST, 49E1T (of tie abotact 0010004 In 2106k 20. it f.m W19he 1100AtS)O

to. SUPPLEMENTARY iC TES

*David W. McLaughlin: D,,partmcnt of Mathematics and Program in Applied
Mathematics, University of Arizona, Tucson, Arizona 85721

1S. KEy WORDS (Cwethiue an roeo afide Hf ncessar and Identitj by block muabe')

4 2SO. ABSTRACT (CantlrM. On #OV4O. Old* It 00001640Y and 1109101f61 6Y block uMomw)

This paper stumuarizen the status of a direct construction o~f an
anyMtotic representation of a modulating multiphase vavetrain for a class of

t ~perturbed KdV equations. This class includes the MV-urgers' equation. The
t calculations apply on a boundary between dispersive and dissipative behavior.

The construction proceeds by standard asymptotic methods. The result of the
construction is an invariant representation of the reduced equations which

~ dN C * ~UNCLASSIFIED Oe



.- mm~l.

stow*" GLOMM"Tom3S OF YWS PA5saffi owae WamIV

Item 20 cemti mea;

Pu'mits their diss ilsatioa. While maea (k&alytge coci
Is Imo lete, oe in taken to creoctly identify the mathmatical,
status of each stop In the construction. The equivalence of this
uatractive poah wi %,h the postulated averag-M of conservation

Im Is e*tblished for two phase waves.

Aesessam per
MS *AM
DTIC VAN 0

Justifleati-- --

, istribit,
02

Avallabl1£ty Codes._.
1and/or

II

UNCLASSIFIED
SICURITY CLAMPICATgON OP TIS PAGIIIwu Om 6~00



1

Abstract

This paper summarizes the status of a direct construction
of an asymptotic representation of a modulating multiphase

wavetrain for a class of perturbed KdV equations. This class

includes the KdV-Burgers' equation. The calculations apply

on a boundary between dispersive and dissipative behavior.

The construction proceeds by standard asymptotic methods. The

result of the construction is an invariant representation of

the reduced equations which permits their diagonalization.

While mathematically the construction is incomplete, care is

taken to correctly identify the mathematical status of each

step in the construction. The equivalence of this constructive

approach with the postulated averaging of conservation laws is

established for two phase waves.
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I. Introduction

In this paper we study the initial value problem for a

perturbed Korteweg de Vries (KdV) equation:

U- 6UU + e 2 U + B f(UEU ,  ,... = 0t xxxx X xx

U(x,t=O) = Uin ( K; x)

Here E denotes the small parameter (0 < c << 1),. while
0 > 0 is a constant of order unity. The initial data U.

-- in

depends upon two spatial scales, a fast scale x/e and a slower

scale x . The reason we tie the fast scale in the initial data

to the small parameter c in the equation is that the KdV

equation (B 0).in the "small dispersion limit" (0 < c < < 1)

is known to develop oscillations whose spatial wavelength is

0(E). Actually, we will restrict our attention to a special

class of initial data - a slowly varying N-phase waveform -

which we will describe in detail later.

Our goal is to construct a representation of the solution

U = U (C)(x,t) which is valid for small, but finite, .

There are two general reasons for our interest in this

problem. The first is technical. We desire to develop a method

for the construction of U(C) which (i) is general enough

to include external perturbations (such as dissipation) of a

completely integrable system, (ii) shows the validity of our

prescription [1,2,3] of "averaged conservation laws" for the
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description of modulating N phase wavetrains, (iii) is a

sufficiently standard mathematical technique that the construction

can provide a first step toward a rigorous proof of the validity

of the representation. There are cases (the sine-Gordon

equation, [4,5] for example) where the wave train is modu-.

lationally unstable. To study this instability one must retain

additional terms in the modulation equations. The technique

we are developing is sufficiently standard that a systematic

retention of such higher order terms can be attempted.

The second reason we are interested in this problem concerns

the Korteweg-de Vries - Burgers' equation itself. Consider

the special perturbation f= - 2 x . Then the equatian

becomes

U 6 UU + E2U - 6U = 0
t X xxx x

2
with 6=0 e2 . Relax this relation between 6 and e for

the moment and think of the equation as depending upon two in-

dependent small parameters, e and 6 . When the dispersive

term is absent (c S 0), the solution U tends, as 6+0, to

a sequence of shocks whose speeds are fixed by the entropy

condition. On the other hand, when the dissipative term is

absent (6 = 0), the solution U becomes very oscillatory for

small E . 'In this case the weak limit of U(€} as E + 0 is

described by a family of nonlinear, hyperbolic equations [6,7,8,91.

When both the dissipative and dispersive terms are present, but

small (0 < c, 6 < < 1), shocks will describe the weak limit provided

Al.Mt&
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the dissipation dominates. Recently it has been established

[ 10 ] that shocks will describe the weak limit as e+0, 6+0,

provided the dissipation parameter S> 0 C. Our calculations

(6=08 2 describe the boundary between dissipative and

dispersive behavior. For stronger dissipation, shocks apply;

on this boundary, the behavior for small c is described by

the equations derived in this paper; for still weaker dissipation,

the weak limit is described by [6,7,8,9].

The method that we are developing has several main advantages:

(i) It constructs a representation of the wave which, since

it is valid for finite, but small c, retains the oscillatory

structure of the wave. (ii) It extends naturally to small

perturbations of integrable systems.

This work has two shortcomings. The first concerns a

limitation of the method itself. It demands a very restricted

class of initial data-slowly varying N-phase waves. This means

that, for general data,. it is not valid uniformly in space;

rather, it applies only in the vicinity of the "shock front".

The second shortcoming concerns the work reported herein; not

the method itself. This work, although systematic, is not

rigorous; we view it as the first step toward a rigorous derivation.

* In the text we will clearly ,identify those points where rigor

is absent.

This work continues our study of the modulation of completely

integrable wave trains [1,2,3,4,5]. The procedure of averaging

conaervation laws to obtain modulation equations, as well as placing
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these equations in Riemann invariant form, was initiated in

[11,12] for the single phase case. The constructive method

employed here follows single phase work in [13,14] and the

multi-phase procedure of [15]. In the single phase case the

results are not new, although our arguments are somewhat more

systematic; in the multiphase case, our results are new because

of our use of the completely integrable exact theory. In the

single phase case, dissipative perturbations of nonlinear,

dispersive wave trains have been analysed previously [12,16,17].

The (weak) zero dispersion limit of the KdV equation is studied

in [8,9,10].

The last section of this paper is motivated by the

rigorous work of (19,20,10].

Finally, I acknowledge many conversations with R. DiPerna,

H. Flaschka, M. G. Forest, C. D. Levermore, H. McKean, G. Papanicolao

and S. Venekidas. My work has certainly benefited from each of

these interacticn s.

* - . -r. ~ . ~ ~.qWN
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I. Definition of the Problem

Consider the initial value problem

U~ -6UU + C2 U + 0f (U, CU 2 ,*** 2 0,
t  x  xxx Ut Uxx

N .(II.a,b)

U(x,t = 0) = i (  ; )(x) Il.

in C

Here 0 < C < < 1 and 8=0(1). The initial data is a

slowly modulating N-phase waveform for the KdV equation which

we now describe.

The KdV equation has a family of exact solutions of the

form

t= WN( t) (x, 0 '2N
U '""t "N 1 . ; N .0 . x 2N fII. 2a)

where the N "phases" I depend linearly upon

•x and t

Iejxt) K x - t . (II.2b}

The waveform WN is 2w periodic in each argument

o -- 4/C . The family of "N phase waves" (II.2a) is
j 3 4

indexed by 2N+1 parameters A = (X0' Xl,... ,X2 N) , which

fix the N spatial wavenumbers K = (KI,.. ,KN ) and the N

temporal frequencies w = (wl,...,wN) The explicit formulas

for K - K( A ) and w = w(T), as well as more details about

these N phase waves, will be given later. For now, we only
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remark that in the single phase (N-i) case, (11.2) is a 2w

periodic traveling wave solution of the KdV equatiom.

The initial data (II.lb) is described in terms of an

N phase wave W Nas follows: Prescribe smooth functions

X )X)W in terms of which

if x1 W. 1 x 0-0____ x(I.a

where

3&& K x)) ,X(x) prescribed

Our problem is to construct a representation of

* CU.= U which is valid for small e We use a standard

asymptotic method which begins with an ansatz:

Here the Cx,t) dependence of *F = '~..e) is to be

determined. We define

Ke (x,t) E 3 E(x,t)

and note that

t ~C

a itU (K + a WEC
x C X



"e m 8

where V U - , E ) (a U. C

•.1 U =,.. U) Of

course, definition (11.5) implies N consistency (or integrability)

conditions for .

t a W (11.6)

In terms of this ansatz, equation (II.la). becomes

[eVU _ 6Ue .VU + (KJ.V) 3U]

S++ 3 c-V) U +(.V)K .V)UC +8f(0 (, V+Cax)U,...)

.1vu x+ 3 Kx .V .+ .K Uvu Jr

In this equation, expansions of the form

0U C A W + C U + £2 U.(2) +

C U K + C K(1) + 2 (2)

W) C % + C W + 2 W(2) +0..

lead to the following sequence of problems:

0(C-1 (w.V) W - 6 W(K-V)W + (K.V)3 W = 0 (11.8

O(Cj ) : L UM + FMj) = 0 , j = 0,1,2,... (11.8|
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where the linear operator L is given by

3
L -wV - 6 (K-V) W + (K.V) 3 (11.9)

The inhomogeneity F(0) is given by

:! F ( 0 )  W Wt - 6WW +3 (K-V) 2 + (K-V) Kx-V)WI + f(W, K-V)W....

+ [W( 1 ).VW - 6 W K (1) VW + 3(K.V) 2 (1).V) WI , (II.10

with similar, but more complicated, formulas for F (j )  > 1.

The sequence of problems (11.8) must now be studied; however,

we first summarize some background material from the theory

of the inverse spectral representation of KdV. This material

will be used throughout the paper.
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III. Inverse Spectral Theory for the KdV Equation

The background material in this section may be found in

[1,21] which contain referencesto the original literature.

Let q = q(y,T) satisfy the KdV equation,

q T 6 qq y yyy( .1)

By considering the "Lax representation" of this equation,

one realizes that it arises as the integrability condition

for the linear system

-a + 2(qy + a q)] T= 4X a y
yyy y y y

(III.2a,b)

aT T. T -2qy T+ 2(q+2X)B yT

The function T is known as a "squared eigenfunction".

Equation (III.2a) is an eigenvalue problem for the squared

eigenfunction T; equation (III.2b) defines its time flow.

The pair (III.2a,b) is compatible since q satisfies KdV.

The pair of equations (111.2) is fundamental in the theory

of the KdV equation. Here we use the pair (i) to generate

an infinite family of conservation laws, (ii) to provide a

representation of the N-phase wave solutions of (II.8a),(iii)

to provide formulas for the fluxes and densities of the

conservation laws in terms of the N-phase waves, and (iv) to

compute necessary averages.

* ,-!4 44: i : , .. . • .. . .- o -. -. -. 4.-.... . . --.--- - --.. . ...



III.A. Fundamental Conservation Law

Let q solve KdV and T solve the pair (111.2). Then

it immediately follows that T satisfies the conservation

law

a T [T] + a [6(q-2X)Y - 2a yy] = 0 . (III .3)

This fundamental conservation law generates an infinite family

as follows: One seeks a solution of (III.2a) which has

the asymptotic behavior

-Y,T;X) + T, Yj(y,T)(2X) - j- 112 as X (111.)

This ansatz in (III.2a) leads to a recursion relation for the

coefficients j (y,T),

y- ayyy + q3y + ay qY. , i = 1,2,... (111.5)

q0

"4 Recursion relation (111.5), together with certain choices of

. integration constants, provides formulas for 'V in terms of

q and its derivatives. We list the first few:

7 1O= i

IF = I" (3q 2_qy

53 52 5 1y qqq.
¥3 q3 + 4-qy _ qqyyyy)

AL

.. .. i ......- '* * ~ ~ * . b ~ f .. 4 . ~ . *....... I d " i ' ' " ' " , ' - ' ' " " "" " ' ' ; '
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4 4

35 4 35 2 + y 5q2qy

+ 3 qq 1 q !
4-20

+ qyyy - yyy 3

By inserting the asymptotic behavior (III.4) into the fundamental

conservation laws (111.3), we obtain a family of conservation

laws for the KdV equation:

aT [T] + a y[6(qij - 7j+) - 2a yy] = 0 , j 1,2,.... (111.7)

III. B. Solutions of the Adjoint Linearized KdV Equation

The squared eigenfunction T generates solutions of the

adjoint linearized KdV equation. Let q and 0 =q+6q denote

* two solutions of the KdV equation. Then, as their difference

6q goes to zero, it satisfies the linear equation

a T 6q - 6 y qq + ayyy 6q=0, 111.8)

with formal adjoint

aT - 6q 8y T + 3yyy T = 0 (111.9)

Let q denote a solution of KdV, and T denote a solution

of the pair (111.2). Then it immediately follows that T

satisfies the adjoint equation (III.9); thus, the coefficients

7 are also solutions of the adjoint equation.
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III. C. The p Representation of KdV Waves

The squared eigenfunction system (III.2a,b) can be used

to generate representations of N-phase watetrains. This

construction begins with the observation that system (III.2a,b)

admits a first integral [22]:

1 T V2 (q-X) T2 R 2 (
2 yy 4 y (III.10}

To construct N-phase waves, we fix (2N+l) real constants

= (XO,A1,...,X
2N) I

X 0 < X 1 < .. < X 2N ,(I~

2
and demand that the first integral R (X) be the polynomial

2 2N
R2 ( d = T1 (X-X) . (111.12)

k=0 k

This situation is achieved by seeking a solution T(N) of the

squared eigenfunction system which is polynomial in X of

degree N :

T(N)y, N X (y,T .(III.13)

J=l l )

Inserting this ansatz into (111.2) leads to the "p-representation

of KdV waves with N degrees of freedom" :

I . 7 ? , ., ,. ,' . . . .., ...... .. :.. .. .-. . .. ...

| ' " ' ,. ... . . .... . .. .
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N

qN(YT) = A -2 j-l= jyT) , (III. 14a)
j=1

(N) 
N

V(N)(y,T;X) = N (-Ij(y, ) (III.14b)
j=l

2N
where A = E ) andJ=0 O

where the pj(y,T) are constrained by

"0 - "1 - 'l ( y ' < < < p2 (YT)< < < 2 (YT)<--2N'

(III.14c)

and satisfy the ordinary differential equations

R(pi)
ay j = 2i - 1-- ) (III.14d

aj - -2i 2A - 2 R (--i) " (III.14e

i~j.

When evaluated on qN' the fundamental conservation law

(111.3) has the p-representation

a T + aY X m0 (III.14f

N

T tMT(N)(y, T Jul J  (III.14g

:(A - Ak)"'k-O

N

6A 12(A + I - 2T (1I1.14
H% ( A - A k )

,.,-.;..



Formulas (111.14) summarize the "p-representation of

KdV waves with N-degrees of freedom". We now show that these

exact solutions of KdV are "N phase wavetrains"; that is,

they are solutions which are quasi-periodic in space and

time which depend upon N phases.

III. D. The o Representation of KdV Waves

The wave 9N admits an equivalent representation which

results once an Abel transformation is used to integrate

the p equations (III.14d,e). On the Riemann surface

R = [X,RA) - /lf (XA-k)] , one fixes a canonical set
0

of a-b cycles (Figure 1). On this Riemann surface, we introduce

the following objects: (i) a basis of holomorphic differentials,

F

Figure 1

- v . ... . . .C * ~ ~ * * , , ", *- *, * * , - -, , '," ,-
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N

* XIj J-1 I dA *(III.15a)

normalized by the condition

fa 6ij ,  
(III.15b)

(ii) A symmetric matrix with positive definite imaginary part,

4 Bii~ a *~(III. l~c)
bi

(iii) Two differentials of the second kind

N

(III.16a,b)

2N

where the coefficient A - X , and the coefficients D

and E are uniquely determined by the normalization conditions

fbi A J=O0

These quantities form the ingredients for a change of

variables from (vI'N) (01'''''0N } :

. . ... ,., j . ,, .: :, ,. , ,.... . ,. , .,.. o . .. ,.o . . , .,f
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N lik,i B ij k= 1 (

If pj(yx) satisfies the differential equations (III.14d,e),

then the new variables G .(y,T) satisfy

(II.18ab)
a e =

where the constants K. and w. are defined in terms of

fa A 1

(II.19a,b)

Wj Wi (1) -12 fa, 02•

Using theta functions, one can invert transformation (111.17)

and give formulas for pj (and therefore qN) in terms

of (j,...,oN,. [ N:

qN - A + r - 23 log [O(z(e);B)] (III.20a)

where the theta function is defined (for z c C ) by

*(zlB) S WZ exp(wi[2(m,z) + (mBm)]) , (III.20b)

mc
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and z(e) denotes the linear map

N Q)

J=l
(III.20c)

where BO ) is the Jh column of the period matrix B

Finally, the constant r is given by
N

r -2 (III.20d)
f a.3

4.

and d denotes a real constant which plays no role in the

following.

In this manner the theory of the exact KdV equation has

generated a solution (III.20a) in the form

• " qN = q N [ I '' N )

where the (y,c) dependence enters only through the phases,

e.(y,t) y + WT + ej ,

and where the wave form is 2w periodic in each individual phase.

Thus, the constants Kj and w are enterpreted physically

as spatial wave numbers and temporal frequencies.

This completes the summary of that material from the in-

verse spectral representation of exact KdV waves which we need

for this paper. Now we return to the analysis of the sequence of

4 problems (11.8).



IV. The Leading Order (O(c ))Problem.

In this section we construct solutions of (II.8a). Fix
4.

2N+l real constants X = (X0<X1<... <~ )2 and

construct the B matrix and the differentials 1J. as in
) 4.

(111.15) and (111.16). Define the wave vector K=ic(X) and

the freqeuncy vector w = w(X) by

1iX fa. 2i

4-X - 2 { Y (IV.la,b)

.. (X 2f. Q42

5% N
For this K=,c(X) and w=w(X) ,we seek W:T (N-Torus) IR

which satisfies the O(c_ ) problem:-

*(w*.V)W -6W(KcV)W + (*KV) 3W =0 (IV.2)

Using material in Section III, we find solutions of (IV.2):,

-10. 4.
0 0

w = W(O;O,X) = aN (O-O;A) (IV. 3)

Equivalently, we may use the p-representation:

W - W(G;GX) - A - 2 I vi P(e-O;A) (IVA )

where the P variables satisfy

(K-V)P =-2i j)(IV. 5a)
jp~ II j v
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(W*V)U. = [2Ai2 2 - 2 (IV. 5b)

In this manner we generate a 3N+l real parameter family of

solutions W:TN JR of (IV.2). N of the parameters,

e=(el...,N) , are trivial in that they merely center the N

phases 0=(01... 0 N) . The remaining 2N+l parameters

X = (N,AI,... 2N) carry qualitative information about the

wave. For example, they determine the wave numbers K=(Kl,...,KN)

and the frequencies w=(wl,...,oN) by (IV.l). In addition,

they determine the mean of the wave W:

(W) N N W() d No (IV.6)(270 N  T N

Remark(i) Physically, it seems more natural to co-ordinatize

the N phase waves by the N spatial wave numbers K, N temporal

frequencies w, and mean (W) rather than by the 2N+1

parameters X * However, the X co-ordinates are better understood

mathematically.

Remark (ii) For the single phase (N=l) case, equation

(IV.2) is an ordinary differential equation of third order which

is easy to analyse. One quickly shows that all of its 2n periodic

solutions belong to the 4 parameter family (IV.3) with parameters

0

* ,v-w ;.(. 0 ,-,.2,e • .. .. * * ****..** . - .. *.* -* *.*. .. %- .-
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Remark (iii) For N > 1, I suspect that all solutions of
aW

(IV.2) which genuinely depend upon all N phases ( i for any j)
j

belong to family (IV.3). Assume there exists W:T N - IR which

solves (IV.2), depends genuinely upon all N phases, and does not

belong to family (IV.3). Then W(y,T) = W(KI1Y+wT,...,K NY+WN T) is a

solution of the KdV equation which is quasi-periodic in y and T

with exactly N frequencies, and yet is not an "N-gap potential"

for inverse spectral theory. I think that no such solution exists.

Remark (iv) Notice that in this theory it is easy to

shut off a phase, say 0.. One seeks a W which is independent)

of 0. If K. and w. go to infinity, this situation is
S3. a

forced upon us. On the other hand, if K and w vanish

(a soliton limit), /ao. is removed from equation (IV.2).

In any case, such situations must be understood before a

modulation theory sufficiently general to create and destroy

phases can be developed.
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V. Solvability Theory for the Linear Problems

Fix W, a solution of (IV.2) in family (IV.3). All

of the 0( j), j > 0, problems are of the form

LU + F = 0 , (V.I)

with a prescribed inhomogeneity F: TN - tJ . Here the linear

operator L is defined in terms of W by

3
LU = (w.V)U - 6(K.V) W U+(k.V) U (V.2)

N
(We work in the Hilbert space of functions U:T ]R which

N
are square integrable over the torus T .)F

For the solvability theory of (V.1), we need to under-

stand n(L), the null space of L, and n(Lt), the null space

of the adjoint of L. Here the formal adjoint is given by

LtV = - (iV)V + 6W(K.V)V -(KV)3V . (V.3)

we have the following fact concerning the null space n (LI):

() N

Theorem VI: (a) (N) N R (X-pj) C n(Lt ) V X
j=1

(b) T -(N) %Y (2-) - j -1 1 2 c T(Lt)V X

(V.4a,b,c)

(c) 7. e r(Lt) v j = 0,1,...

( TV

. *-v '-''- ' .'= ; -. ' ". • " "- o'. " " - . . • *, - . . -. . . . . . . . . . .
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The proof of this theorem follows immediately from the material

around (111.14), together with the fact that I (y,t) depends

upon (y,t) only through the phases 0j(y,t) = jy+Wjt.V

Theorem V.2: Formulas (V.4) generate only (N+Il) linearly

independent members of n (Lt). These may be represented as

N N

-: (a) {aOCl,...,aN} , where H (A-Vj) = a 0 o.x j

(V.5a,b)
(b) N)

Theorem V.3: (a) T c n(L) V j=l,2,...,N

(V. 6e-,b)

(b) 1 - 6 (ic*V,) W c n(L)

Using formulas (V.5), we have (N+I) solvability conditions

' which are necessary if (V.1) is to have a solution. For

N=l, simple analysis of the ordinary differential equation shows

that these are actually necessary and sufficient. We have

Theorem V.4 Let N = 1 . Then

(a) n (Lt) = span {l,W}I. (V.7)
(b) n(L) = span {w, 1-6 K w)

p + ;j< -. .. :.... .. -. - : ..,. ..: . . . .. . ,. . . , , .. . .. . .
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* Thus, in the N=l case, both n (L) and n(Lt) have

dimension 2.

Remark (i) For N > 1, we suspect that n(L) and

r(Lt) have dimension N+I. If so, n(Lt) = span ,...,
-j

"* We have not succeeded in proving this. For now, the solvability

conditions

(TjF) = 0, for j = 0,1,...,N (V.8)

-are necessary for N > 1; necessary and sufficient for N = 1.

*4

..

-•T

4
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0VI The 0(c) Problem

Armed with this solvability theory, we return to the

0sequence of linear problems (II.8b). Explicitly, the 0( O)
problem is

L U(0) + F( + ,0) (VIla)

'0) = [W - 6 + 3 (+ (K'V)(KX V)W

+ Of(W,K.VW,...)] , (VW,lb

f(0) = [(W(1).v)w - 6W K(1). VW + 3(K.V)2 (K(I1 v)w .

In the source, one does not have to worry about "(O)

because for this part of the source, we have an explicit

solution. Recall thit W satisfies

* (w.v)w - 6W(K'V)W + (KtV)3W = 0.

Define 2N functions on the torus TN by

( j) _W (VI,2)
4 (Kj) _ W

X , a 1,2,.. N.
, a

Then, by differentiating the W equation, one finds

- LX + - w -, 0 (,3)

.4 (Ic)

L Lx - 6w W + 3(K*V) 2  w- o

Using (VI,3) we may write U(O) as follows:

% ~ ~ ~ ~ ~ .% . . "" '.". *' -' . .'. " ". -, ' * , ' ' "- ." , . ' , -• -. . '
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- i + K ) + U (VI,4a)
jal

where

L (o) + -(o) 0 (VI,4b)

Thus, the solvability theory need only treat F()

Theorem (V,2) provides N + 1 necessary conditions for

solvability,

( (0)) = 0 for J - (0,1,...,N). (VI,5)

In this manner, we arrive at the modulation equations which

must be satisfied:

a = x a xl,2, W,NtJ x '..
(VI,6)

ip wt - 6ww +3 [(KV) 2. x + (K.V)(x.V)Wc +

=0,J=0,1, .. .,N

Equations (M1,6) are the main result of this section.

They provide a system of 2N+1 first order partial differential

equations for the 211+1 parameters 0 (X0'...,).2N). The

first N equations result from consistency of the ansatz;

the last N+1 from necessary solvability conditions.

Equations (VI,6) provide a closed system which depends only

upon p, * In the next section, we place this system

in manageable form.

If the null space is exactly N+1 dimensional (as we

know for N=1 and suspect for 11 > 1), these solvability
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conditions are necessary and sufficient to ensure the

existence of U(1 ) : TN 3 JR . At this stage, one can

proceed in two different directions. (i) One can continue

to generate higher order terms U(J ) in the expansion of

UE  The corrections to the frequencies w the wave

numbers K , and the mean <Us> will provide sufficient

freedom to ensure solvability at each stage. In this manner,

a formal asymptotic expansion of the form

E ^VW + CUM + E2 U(2) +can be constructed.

(ii) Alternatively, one can truncate the expansion at

W; A(Xt)) where the T(x,t) satisfy the modulation

equations (VI,6) and prove that U £ - WN is 0(c) with some

uniformity. The second direction is the most important.
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VII. Connection between the Modulation Equation and

Averaged Conservation Laws

The modulation equations

wj i j=

(VII.la,b)

(Vj, wt-6WWx+3[(K-V) 2WX+(K'V) (K-V)W]+Of(W,c.VW, ... )) = 0

j - O,1,2,....,N,

although a closed system for T(x,t), appear to be a

complicated system of nonlinear partial differential equations.

* In [3] we show that, even in the presence of an external

perturbation f, these modulation equations are actually very

tractable provided (VII.lb) can be replaced by N+1 averaged

conservation laws. In this section we derive the validity of

this replacement for N = 1,2. (This is sufficient to treat

2 phase waves.)

VII.A. Averaged Conservation Laws

SOne approach to deriving modulation equations is to

average conservation laws. One assumes that the exact equation,

- 6UUx + Et + Of(U,U ,2 U ,..) = (VII.l)
Ut-Ix xxx x xx

has a solution of the form

U' w [ l x t  ON (x tt )

, ..., * ; (x ,t ) + 0 (M ) , (V I I .2 )
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which is 21 periodic in each GJO rn addition, it has

conservation laws of the form

atT(U,Ux,.... )+ 3xX(U,eUx,... ) + OG(U, Ux ,...) - 0 , (VII.3

for any solution of (VII.1). In particular, evaluating on

solution (VII.2), conservation law (VII.3) takes the

form (at 1 w.V + 3t, etc.).

1I [ (Wv) T+(,,C.V)X )
(VII.4

8 ~ V + X('WN -KV) WN,..+G ], VWN,.
+ r(WN,(K.v)WN,...) + (K

+ ... "* 0

When averaged over TN , the O(c- ) term averages to zero, and one

is left with the averaged conservation law

a t < T ( W N ' (K 'V )W N ' " .)> + " "X" ' K V ) N 1 ..)

+ O<G(WN,(,*V)WN ,...)> = 0 (VII.

This is one equation among 2N+l unknowns.

Each KdV conservation law will lead to an averaged

conservation law of the form (VII.5). Indeed, consider

th KdV density as generated by the recursion relation (111.5),

Yj = O(U OCU, ... , (Ca x)1kiU) . Here k. is the order of

the highest derivative of U in . We compute:

, 7, *€',',',:-., : -:.. .. . ...• .. . •• compute:. . . .. .. . . .
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k

I *' a x ) U

kJ 'f ( ) 1[6UU-c2Ux- 2f(U, CU,
I- )ut X X XX

0=0

where Tj', denotes a partial derivative. Thus)

we obtain the perturbed conservation law

k.
t j + a xX = -0 Tj ,(ax) f(ULUX,tjuXu x ,1.0.)

with the right hand side explicitly given in terms of the jth

density and the external perturbation f. Evaluating this

conservation law on the wave form (VII.2), and averaging

over the torus TN yields the perturbed avaraged conserva-

tion law

YT i > + a X<6(wT -j+l)> + O<G >1  (VII.6a)

.4 where k.
<G~~~~ >( I( K-I0_V) Zf (W,K.VW, (I.b

1=0

and the densities V are evaluated on the N phase wave form W.

For later use, we list the first three:

t<W>- a x<3W2> + <f(W,(K.V)W,...)> =O
(VII.a,b,c]w2  2

a AL> a <2W+2+2 2VW2> + O<W f(W,K'VW,...)> = 0

a<->3- (K. W > V 1W4 2( W2 3(K07 Wt 2 x 2

+ 8<3W 2 f + (=V)W (k.V)f> 0

) ",;;''" "," ."' ":, ".[ " ' .," v'.'-. '- "-"-'> '. .. '',.'.(e '.c.,,V-,. ( , . , .. :',v,..f','>,i '
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.VII.B. Connection between Averaged Conservation Laws

and Null Space Modulation Equations

Consider the null space equations (VI.5),

(j, ) -0, j = o,,2,...,N,

(VII. 8a,b)

01 = Wt 6WW + 3((KV) 2 W + (K.V) (Kx-V)W) + ff(W, K.V)W,....)

We show the first three of these are averaged conservation laws;

indeed, they become (VII.6) for j 1,2,3. Since T0 1, the

first is immediate:

0 = 0 ,j(°)) = (l, F(o))

S= <W> - D <3W2> + O<f>*t x

The next is almost as simple:

o (l, = (w, (° )1

SW, Wt ) . - (W, 6WWx ) + 3(W, (K V) 2 Wx+ (K'V) (Kx-V)W) + O(W,f)

-a t< 2> - 2 ax<W > - 3(K-VW,Dx (.V)W) + O(w,f)
< I2 > - ax<2 + (KOVW) 2 > +O<w f>.

t 2 2

The verification that the third null space equation yields

the third averaged conservation law is more tedious.

It uses an extra ingredient -- t -- Wj. This calcula-

tion begins as follows:

V V* % ,? f , , : %-.- , . . . ,.,;. -;., .- ,...-y.v ., ,.



* 32

0 - 2(T 2~O) F (3W- (-V) W,~~

= (3W2 - (KcV 2 W W,-3 (W2) + 3 (KcV)W+ 3 (KcV i V f

- 3W 2 'W t )- (UK'V 2 W~w )+ 9(w 2 w2 ) )+ 3((K'V) 2 W'(W

+ 9(w 2 #,tcV) 2 W) - 3((K- V) 2 W, (K- V) 2 W )

+ 9(W2, (K-'V) (KOV)W) - 3((K-V) 2W, (,cV) (ixov)W)

+ 30(W 2 f) -O((K-V) 2 Wf)

- %<W3 > + ((K-V)W,(K-Vw) a <.4 - 3((K-V)W,(K.V)(W 2)

t 2 2 2

- 9 ((,c'V)w2 I(KOV)W x) 3((K"'V) 2W,(,c*V) 2~ - 9 ((c.V)W2,(Icsv)W.)

- 3((,c.V) 2W,tKicV)(K: V)W) + O~[W2_0~)2-W

a <3> a UK-V)WJ 2 > -(KV)W,(IctViw) < 94>

- 3((K .V) 2 r (K.V) 2 W) -3 ((KcV) 2 W, (K-y) (ic V)w!)

3((ic.V)W, (,cV) (W2 )) - 9(KV)X(-W2

- 9(CK.V) W2 ,(Kc V)W <f[3W 2 _(K-V) 2wl

Continuing,



0 a <W +I(VW2> a < I W4 + O~f 3W2 _(gc.V) 2W1 >

*-((K-v-)W,cact9V)w) a- 3 ( )2W,2>

2X
+ 3 ( (-K-V) 2W, (icV)(K *v)w)

- a x l2W(K-VW) 2 > + 12(WX,(KV'w) 2) + 24(W,[(IC-V)WI ic-VWX)

+ 24(W,[(K-V)W(cX.V)'W) - 6((ic.V)W,W(K.V)W ) 6([(ic*V) W]2,W )

- 18(cc-V)WX,W(CK-V)W) - 18(W(K-V)W,(Kclpv)W)

Therefore,

31 22

-*+ 1. I(IcV) 2W,2> + O(ft3W2 -(C.V) 2 W,>

22

= (Ic-V)W,(kt-V)WJ - 3((c.V)2W, (K*V)(c *V)W)

-((-V)W, 6V~x(ic.V)w + EW(kx*V)W) (VII.9)

=(CiV)W, (K VW + 3(ic.V) 2 (I%.v)W)

- 6WX (IcV)W - 6W(Icx *)-W

Thus, the third null space condition will yield the

third averaged conservation law provided the expression

((K- V) W#(K tV)-W+ 3(KV) 2 ocx*V)W- 6W (ec.V)W- 6W(CX. 1)W) (VII.lO)

vanishes. To reach this point, we merely integrated the null

space condition by parts several times. Now we employ the

*first N modulation equations
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Kt =(X

to replace expression (VII.10) by

K- ((.v)w,(wx V)W + 3(K- V) 2 (.v)W- 6W, (KIV)W 6W(KW.V)w)
x (VII.10,)

To show this expression vanishes, we use the equation satisfied

by the N phase wave :

(W-V)W - 6W(KI.V)W + (K.V) 3W = 0

Differentiating this equation with respect to x yields

3

(K.V)W, ( W( K'V)Wx - 6W (KV)W + (.V) W

-~ 2

- (wx*V)W- 6W(Kx V)W + 3(K'V) (KX V)W= 0

Finally, take the inner product with (icV)W:

((K*v)W,(w'v)w x - 6W(.I.V)Wx - Wx('C-V)W+ (IC.V)3W

+ (w .V)W-6EWl 'x.V)W + 3(ic'V) II xV)W) = 0

That is,

: ((K-VlW x , (w.V)W- 6W('K.V)W+ (K.V) 3 W)

+ ((.KV)W, (wOV)W+ 3(K'V) 2 (K V)W- 6W (KV)W- 6W(K xV)W) = 0

The first term vanishes by the fact that W solves the N phase

equation; thus, we arrive at the vanishing of (VII.10')!

a- " : ; " I : ' : " : ' ' ' 0'" ' ' ; i ... . . . . .. ... . " ... . .
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In summary, we have shown that (i) the first two null

space equations imply the first two averaged conservation laws,

and that (ii) the third null space equation, together with

the consistency conditions K t = X , imply the thirdx

averaged conservation law.
_____ ____ th

Remark (i). Presumably, the j null space equation,

together with the consistency conditions, implies the j th

averaged conservation law. To prove this statement, one

needs a more abstract argument than the explicit calculation

described above. As yet, we have not succeeded.

Remark (ii). We have completed a first step toward

this argument. Consider (6H./ W, Using the identity [31]

6H.
Hj 2-j+- W

we obtain

8H.
- ~ W) + ~- Kt

where H = H.(W;k). Thus,

-j> -
* H. 1 a 6H. +1 H

7-It YJT q+ '
w

Equivalently, it may be better to use a formula from [ ],

W = T X + ad W - + W- ,w (VIT.12)

where T- Ma , 't - x .

- * ~ S
5

.I.4~ ** 5 . ~ '5 ' ~ * *~S'
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* VIII. An Invariant Form of the Modulation Equations

In this section, we assume the correct modulation

equations are of the form

K-W.

K. x 3~(~ .,,.,
(VIII. la,b)

t ('V. + a x XI) + 0( G.> j = ,,.,~

We summarize some results of 131 in order to emphasize that

these modulation equations are indeed tractible.

In [1, we establish the following

Theorem The modulation equations (VIII.l) admit an

equivalent representation in terms of the differentials

where F is a meromorphic function on the Riemann surface

R of the form

N

F(X) A M() (VIII. 3a)

R.0



The coefficients a. are fixed in terms of (G.) by the

linear system

[(N-kN - 2 2 X]a I 2 (Gj >)j=0,1,21 2

Pj~~~~~-k N-eN-k 2m0[= - 2+ jl' ' '..

(VIII.3b)

Here
CO

-2 J2k
2N 2k=O:-.." (I-X£ 2 )

Representation (VIII.2) is fundamental. It contains

alternative representations and quickly shows they are equivalent.

For example, the most useful mathematical form is an immediate

Corollary (Riemann Invariant Form of the Modulation Equations).

By evaluating the invariant representation Dt f - axQ2 + OdF=0

at the branch points, one obtains

N1 +11(]x£ = .N+l £=O,l,...,2N, (VIII.4a)

whr +where the £th characteristic speed s ()1 is given by

* 5 g % , ; . ; . , ' - ' Z 2 , ' 
.

. ' . . ' ' . ' , , ' - . ' , . . - , - - - . . . . . . . . .
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i

N+2-1,2 E X -
s-1 = • (VIII. 4b)

N+I

D
=1

A fully nonlinear modulation theory cannot be simpler than.

the Riemann invariant form (VIII.4a). We emphasize the "internal

perturbations" described in the introduction cause the parameters

to modulate with the characteristic speeds s(9) (X). The

external perturbation f provides the right hand side of the

modulation equations.

-.

. r -t"..s ~ ~ S ,C ., -. a* * .

:...
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IX. The Weak Limit as a Measure

Recently, in some very interesting mathematical work

[19,20,101 weak limits of solutions of nonlinear pde's

have been described by a measure. When the nonlinear pde

is dissipation dominated, as in Burgers' equation,

the measure is simply a Dirac measure supported on the shock.

When oscillations persist as in the small dispersion limit

of KdV, the weak limit is more interesting. As yet, the

measure has not been rigorously characterized.

Our purpose in this final section is to calculate,

with heuristic reasoning, the measure which describes the

A weak limit as -E -* 0 of problem (II.la), in a region of
.4

space-time where the solution is described by a modulating

N-phase wave. Since modulation theory constructs the

solution for small but finite C, our representation certainly

contains enough information to calculate the measure very

explicitly.

Consider the solution of

Ut - 6UU x + e2Uxxx + 8 f(U,EU x, ... ) = 0 , (IX.l)

as constructed in this paper. Namely, in a region S of space-

C
time, let U be the modulating N phase wave

.r,- . *. ! ;; . ........



e ((x, t) 0N(x,t)
U (Xt) = WN t (x,t)

+ U1) ; x,t )+..., (IX.2)

with the modulation of the parameters T(x,t) described by

= dF (IX.3)

Fix some t and a spatial interval I such that (t,I) E S ;

further, let *: JR * R denote any test function with

support within I. Fix f: JR -*]R and consider

[., f(U()(.,t)= J *(x,t) f(U( )(x,t)) dx I

*which one must consider in order to describe the weak limit

f(UM (.,t)) as £ + 0. We compute:

(f ,f (U ( ( . , t l ) ) = (x,t) f(U ( C ) (x,t)) dx

x i +A/2

= E J *(x,t) f(U (x,t)) dx
Sx i - A/2

i x0 ii+A/2 (x't). f[((tIx) ; T(t,x))] dx

xi-A/2

00 x i A / 2

E *(xiut) f[WN((t -X); (t,xi))]dx

xi-A/2 (A tiny)



x.+A/2

(x t) A f [Wnic J (t,x.)

x 1 -A/2

A/C

N C A {f~ ) 1 TfN1IrN Nox Itde

J (x t) < f(W4N; xt) ) > dx (A -1- 0)'

*4 Thus, we compute

lrn (Of(UC (.,t))) = (0, <-f> j 0,
Cf 0

that is,

1 N f~kNO t(x,t))] d NO.
(21T) L

The measure itself can be characterized very explicitly by

using the j-coordinates for the torus (see VII.18 )

I~ Z~ N *&'s'* .pC '
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€u x)) 0 f[A(x,t)- I I" j=l
bI  bN

(Ix. 5)

N di^ ... d

IT IR(ji;T(x,t))Ii=1

(By translation, we can remove the function A(xt) from the
argument of f.)

Formula (IX.5) is the main result of this section.

It shows that the weak limit as c * 0 can be characterized

by a measure, and gives an explicit formula for the measure.

Notice that the (x,t) dependenae of the measure is

through T(x,t) which satisfies n = dF. This is precisely the

measure used in [l].

Remark. Our calculation is limited to the region S

where the solution is an N phase wave. It is not uniformly

applicable. However, we believe it indicates that the

general weak limit, which would be valid for all space,

should be characterized by the quadratic variational problem

of .[8,9).

* 'C
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